Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy.

نویسندگان

  • Yiannis Roussakis
  • Rongxiao Zhang
  • Geoff Heyes
  • Gareth Webster
  • Suzannah Mason
  • Stuart Green
  • Brian Pogue
  • Hamid Dehghani
چکیده

The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife(®)) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy(®) linear accelerator with portal images acquired using the iViewGT(™) system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT(™) system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife(®) radiotherapy treatment field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.

Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation ...

متن کامل

CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility.

There is a clear dose response for localized prostate cancer radiotherapy and there probably is a radiobiological rationale for hypo-fractionation. Combining the two should maximize tumor control and increase the therapeutic ratio. This study examines the rationale and technical feasibility of CyberKnife radiotherapy (a robotic arm-driven linear accelerator) for localized prostate cancer. Its a...

متن کامل

CyberKnife in the treatment of prostate cancer: a revolutionary system.

The CyberKnife is a frameless advanced robotic system that uses image-guided radiotherapy (IGRT) and adaptive radiotherapy (ART) for stereotactic radiosurgery technique in intraand extracranial lesions. The CyberKnife has also revolutionised the use of radiosurgery to treat tumours in different parts of the body. This system represents, after three-dimensional conformal radiotherapy (3DCRT), a ...

متن کامل

Intra-fraction dose delivery timing during stereotactic radiotherapy can influence the radiobiological effect.

The sequence of incremental dose delivery during a radiotherapy fraction can potentially influence the radiobiological effect. This would be most noticeable during the long fractions characteristic of hypo-fractionated stereotactic radiotherapy and radiosurgery. We demonstrate here the spatio-temporal variation of dose delivery by the CyberKnife to a lung tumor and propose strategies to reduce ...

متن کامل

Towards Personalized Imaging in Image-guided Radiotherapy

Recently, with the advent of linear accelerators equipped with on-board x-ray images and advanced imaging technologies, image-guided radiotherapy (IGRT) has gained worldwide momentum in the radio therapeutic management of cancers in terms of volumetric information-based accurate tumor localization, real-time patient setup and margin reduction [1,2]. The involved technologies include digital rad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 22  شماره 

صفحات  -

تاریخ انتشار 2015